Corrected error calculation for iterative Bayesian unfolding

Tim Adye, Rutherford Appleton Laboratory
17th October 2011

The unfolding method based on iterative application of Bayes’ theorem described by D’Agostini [1] (though similar to the iterative procedure of Mülthei and Schorr [2]) is a convenient method, popular in Particle Physics.

Measurement uncertainties

As with all unfolding methods, it is important to understand the uncertainties in the unfolded distribution, and especially the bin-to-bin correlations that ensue as a result of the regularisation process (in the Bayes method without additional smoothing, regularisation comes about as a result of limiting the number of iterations). In many cases, the largest source of uncertainty is from propagation of the measurement uncertainties through the unfolding matrix.

D’Agostini ([1] section 4) gives the unfolded distribution (“estimated causes”), \(\hat{n}(C_i) \), as the result of applying the unfolding matrix, \(M_{ij} \), to the measurements (“effects”), \(n(E_j) \):

\[
\hat{n}(C_i) = \sum_{j=1}^{n_E} M_{ij} n(E_j)
\]

(1)

where

\[
M_{ij} = \frac{P(E_j|C_i)n_0(C_i)}{\epsilon_i f_j}
\]

(2)

and \(P(E_j|C_i) \) is the response matrix, \(\epsilon_i \equiv \sum_{j=1}^{n_E} P(E_j|C_i) \) are the efficiencies, and \(f_j \equiv \sum_{i=1}^{n_C} P(E_j|C_i)n_0(C_i) \) is the folded prior distribution, \(n_0(C_i) \) — initially arbitrary (eg. flat or MC model), but updated on subsequent iterations.

D’Agostini then calculates the covariance matrix, which here we call \(V(\hat{n}(C_i), \hat{n}(C_i)) \), by error propagation from \(n(E_j) \), but assumes that \(M_{ij} \) is itself independent of \(n(E_j) \). That is only true for the first iteration. For subsequent iterations, \(n_0(C_i) \) is replaced by \(\hat{n}(C_i) \) from the previous iteration, and \(\hat{n}(C_i) \) depends on \(n(E_j) \) (Eq. (1)).

To take this into account, we compute the error propagation matrix

\[
\frac{\partial \hat{n}(C_i)}{\partial n(E_j)} = M_{ij} + \frac{\hat{n}(C_i)}{n_0(C_i)} \frac{\partial n_0(C_i)}{\partial n(E_j)} - \sum_{k=1}^{n_E} \sum_{l=1}^{n_C} \frac{n(E_k)\epsilon_l}{n_0(C_l)} M_{ik} M_{lk} \frac{\partial n_0(C_l)}{\partial n(E_j)}
\]

(3)

where \(\hat{n}(C_i) \) is the unfolded result from Eq. (1). This depends upon the matrix \(\frac{\partial n_0(C_i)}{\partial n(E_j)} \), which is \(\frac{\partial \hat{n}(C_i)}{\partial n(E_j)} \) from the previous iteration. In the first iteration, \(\frac{\partial n_0(C_i)}{\partial n(E_j)} = 0 \) and we get \(\frac{\partial \hat{n}(C_i)}{\partial n(E_j)} = M_{ij} \).
We can use the error propagation matrix to obtain the covariance matrix on the unfolded distribution

\[
V(\hat{n}(C_k), \hat{n}(C_l)) = \sum_{i,j=1}^{n_E} \frac{\partial \hat{n}(C_k)}{\partial n(E_i)} V(n(E_i), n(E_j)) \frac{\partial \hat{n}(C_l)}{\partial n(E_j)}
\]

from the covariance matrix of the measurements, \(V(n(E_i), n(E_j))\).

Without the additional terms in Eq. (3), the error is underestimated if more than one iteration is used, but agrees well with toy Monte Carlo tests if the full error propagation is used, as shown in Fig. 1.

![Figure 1: Bayesian unfolding measurement errors compared to toy MC RMS for 1, 2, 3, and 9 iterations. The left-hand plot shows the errors using D’Agostini’s original method, ignoring any dependence on previous iterations (only the first term of Eq. (3)). The right-hand plot shows the full error propagation.](image)

D’Agostini takes a multinomial distribution for the bin contents, and hence

\[
V(n(E_i), n(E_j)) = n(E_i)\delta_{ij} - \frac{n(E_i)n(E_j)}{N_{\text{true}}}
\]

where \(\hat{N}_{\text{true}} \equiv \sum_{i=1}^{n_C} \hat{n}(C_i)\). That describes a histogram with fixed normalisation, ie. fixed total number of measured events. On the other hand, in counting experiments common in particle physics, each bin is independently Poisson distributed, with

\[
V(n(E_i), n(E_j)) = n(E_i)\delta_{ij}
\]

Other, arbitrary, bin errors (perhaps even correlated) may also be used in Eq. (4).

Response matrix uncertainties

The response matrix, \(P(E_j|C_i)\), is usually estimated by Monte Carlo. If only limited MC statistics are available, then there will be uncertainties on the matrix elements. These may be propagated as an uncertainty on the unfolded result.

A correction is also required to D’Agostini’s treatment of this response matrix error propagation to account for the fact that, after the first iteration, the prior, \(n_0(C_i)\), depends on the response matrix. Taking this into account, the error propagation matrix for the response is
\[
\frac{\partial \hat{n}(C_i)}{\partial P(E_j|C_k)} = \frac{1}{\varepsilon_i} \left(\frac{n_0(C_i)n(E_j)}{f_j} - \hat{n}(C_i) \right) \delta_{ik} - \frac{n_0(C_k)n(E_j)}{f_j} M_{ij} + \frac{\hat{n}(C_i)}{n_0(C_i)} \frac{\partial n_0(C_i)}{\partial P(E_j|C_k)} - \frac{\varepsilon_i}{n_0(C_i)} \sum_{l=1}^{n_E} \sum_{r=1}^{n_C} n(E_l)M_{il}M_{rl} \frac{\partial n_0(C_r)}{\partial P(E_j|C_k)}
\]

where \(\frac{\partial n_0(C_i)}{\partial P(E_j|C_k)}\) is the error propagation matrix from the previous iteration, \(\frac{\partial \hat{n}(C_i)}{\partial P(E_j|C_k)}\). For the first iteration, this is zero and the final two terms in Eq. 7 disappear, leaving us with an expression compatible with D’Agostini’s for \(\frac{\partial M_{ki}}{\partial P(E_r|C_u)}\).

The covariance matrix due to these errors is given by

\[
V(\hat{n}(C_k), \hat{n}(C_l)) = \sum_{j,s=1}^{n_E} \sum_{i,r=1}^{n_C} \frac{\partial \hat{n}(C_k)}{\partial P(E_j|C_i)} V(P(E_j|C_i), P(E_s|C_r)) \frac{\partial \hat{n}(C_l)}{\partial P(E_s|C_r)}
\]

where \(V(P(E_j|C_i), P(E_s|C_r))\) can be taken as multinomial (as D’Agostini does), Poisson, or other distribution.

The effect of the new response matrix error calculation can be seen in Fig. 2.

Figure 2: Bayesian unfolding response matrix errors compared to toy MC RMS for 1, 2, 3, and 9 iterations. The left-hand plot shows the errors using D’Agostini’s original method, ignoring any dependence on previous iterations (only the first line of Eq. (7)). The right-hand plot shows the full error propagation.

References
