π, μ Yields for Offset Study2 Geometry

John Back

University of Warwick

17th February 2009
Introduction

- π, μ accepted yields for 10 GeV proton beam and W target cylindrical rods
 - As before, radius of beam = radius of rod, tilt of beam = tilt of rod
- Compare yields from Helmholtz geometry with Study-2 geometry for targets placed upstream of coils. Differences from earlier results (19 Dec ’08):
 - Helmholtz geometry: Target rods centred at $z_0 \approx -15$ cm as before.
 Gap increased from 25 cm to 30 cm: $\sim 10\%$ increase in currents to get 20 T
 - Offset Study2: Target rod ends placed immediately behind first Cu coil
 (z_0 between -80 and -72.5 cm), as before. No upstream SC coils.
- Next page shows the two geometries, while the remaining pages show the yields for the two cases.
- We see that yields for the second case are lower, as expected (lower B field).
Target Geometries

Helmholtz

Offset Study 2
Charge averaged π, μ accepted yield per proton for $r_{\text{beam}} = 0.25 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using Study2 optimal tilt, radii)
Charge averaged π, μ accepted yield per proton for $r_{\text{beam}} = 0.50 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using Study2 optimal tilt, radii)

Helmholtz

Offset Study2
Charge averaged π, μ accepted yield per proton for $r_{\text{beam}} = 0.75 \text{ cm}$

Helmholtz

Offset Study2

Dotted line is Hg jet yield for 10 GeV beam (using Study2 optimal tilt, radii)
Charge averaged π, μ accepted yield per proton for $r_{\text{beam}} = 1 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using Study2 optimal tilt, radii)

John Back 17 February 2009
Charge averaged π, μ accepted yield per proton for $r_{\text{beam}} = 1.5\, \text{cm}$

Helmholtz

Offset Study2

Dotted line is Hg jet yield for 10 GeV beam (using Study2 optimal tilt, radii)