MARS Target Re-absorption Studies

John Back
University of Warwick

5th July 2007
Introduction

- Using MARS code and Study-II geometry to find pion & muon absorption
- Counting number of \(\pi \) and \(\mu \) along different \(z \) planes within target aperture
 - Ratio of yields for different target arrangements compared with “1 rod” gives the \(\pi \) and \(\mu \) re-absorption as a function of \(z \)
 - All rods have a length of 30 cm. Compared two scenarios:
 * 1 rod vs many rods, all inclined \(-100 \text{ mrad} \) w.r.t. \(z \) axis (\(x - z \) plane)
 * 1 rod vs 3 rods all along \(z \) axis (previous results)
 - One rod centre at \(z = -15 \text{ cm} \), same as \(z \) position of (Study-II) Hg jet crossing proton beam (and intersecting \(z \) axis).
- Proton beam (E=10 GeV) is inclined \(-67 \text{ mrad} \) from \(z \) axis in \(x - z \) plane

\(x \) = vertical direction in MARS, \(z \) = horizontal axis along target
Target Geometry:
- Iron plug (light blue)
- SC magnets (yellow)
- Cu coils (purple)
- Shielding (brown)
- W rods (dark blue)
- B field lines (red)

Beam:
- 10 GeV protons
- Inclined -67 mrad w.r.t z axis (x-z plane); x is along vertical direction
- Circular parabolic with radius 0.5, 1 or 1.5 cm
- One W rod vs many ("3") W rods tilted w.r.t. z axis (10 cm spacing).
- Beam has radius of 0.5 cm.
- Rod diameters: 1, 2, and 3 cm.

- Dotted vertical lines show ± 30 cm Δz intervals around 20 T peak region. First rod always positioned at $z_{\text{centre}} = -15$ cm.
- 2nd yield peaks are from the p beam hitting the shielding.
• Previous results of one rod vs 3 rods all along z axis (10 cm spacing).

• Beam has radius of 0.5 cm.

• Rod diameters: 1, 2, and 3 cm.

• Dotted vertical lines show ± 30 cm Δz intervals around 20 T peak region. First rod always positioned at $z_{\text{centre}} = -15$ cm.

• 2nd yield peaks are from the p beam hitting the shielding.
- One W rod with many W rods tilted w.r.t. z axis (10 cm spacing).
- Beam has radius of 1 cm.
- Rod diameters: 1, 2, and 3 cm.
Previous results of 1 rod vs 3 rods all along z axis (10 cm spacing).

- **Beam has radius of 1 cm.**
- **Rod diameters: 1, 2, and 3 cm.**
• One W rod with many W rods tilted w.r.t. z axis (10 cm spacing).
• Beam has radius of 1.5 cm.
• Rod diameters: 1, 2, and 3 cm.
- Previous results of 1 rod vs 3 rods all along z axis (10 cm spacing).
- Beam has radius of 1.5 cm.
- Rod diameters: 1, 2, and 3 cm.
\(\pi, \mu\) yields and lost frac (absorption) at \(z = 6\) m c.f. best for inclined W rods

All Hg and W (50\% \(\rho\)) jets: \(r_{\text{beam}} = 0.15\) cm and \(r_{\text{jet}} = 0.5\) cm

For \(r_{\text{beam}} = 0.5\) cm, rod diameter = 1 cm
* = 1 rod case is also inclined

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1 W rod</th>
<th>3 W rods</th>
<th>W Toroid</th>
<th>Inclined W rods</th>
<th>Hg jet</th>
<th>W jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos Yield</td>
<td>0.021</td>
<td>0.013</td>
<td>0.017</td>
<td>0.029</td>
<td>0.033</td>
<td>0.031</td>
</tr>
<tr>
<td>Neg Yield</td>
<td>0.021</td>
<td>0.013</td>
<td>0.016</td>
<td>0.030</td>
<td>0.037</td>
<td>0.030</td>
</tr>
<tr>
<td>Pos LFrac</td>
<td>—</td>
<td>38%</td>
<td>21%</td>
<td>5%(*)</td>
<td>4%</td>
<td>+3%</td>
</tr>
<tr>
<td>Neg LFrac</td>
<td>—</td>
<td>40%</td>
<td>25%</td>
<td>8%(*)</td>
<td>2%</td>
<td>5%</td>
</tr>
</tbody>
</table>

For \(r_{\text{beam}} = 1\) cm, rod diameter = 2 cm

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1 W rod</th>
<th>3 W rods</th>
<th>W Toroid</th>
<th>Inclined W rods</th>
<th>Hg jet</th>
<th>W jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos Yield</td>
<td>0.027</td>
<td>0.012</td>
<td>0.015</td>
<td>0.026</td>
<td>0.033</td>
<td>0.031</td>
</tr>
<tr>
<td>Neg Yield</td>
<td>0.027</td>
<td>0.012</td>
<td>0.014</td>
<td>0.026</td>
<td>0.037</td>
<td>0.030</td>
</tr>
<tr>
<td>Pos LFrac</td>
<td>—</td>
<td>56%</td>
<td>45%</td>
<td>14%(*)</td>
<td>4%</td>
<td>+3%</td>
</tr>
<tr>
<td>Neg LFrac</td>
<td>—</td>
<td>58%</td>
<td>48%</td>
<td>16%(*)</td>
<td>2%</td>
<td>5%</td>
</tr>
</tbody>
</table>

For \(r_{\text{beam}} = 1.5\) cm, rod diameter = 2 cm

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1 W rod</th>
<th>3 W rods</th>
<th>W Toroid</th>
<th>Inclined W rods</th>
<th>Hg jet</th>
<th>W jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos Yield</td>
<td>0.022</td>
<td>0.011</td>
<td>0.011</td>
<td>0.022</td>
<td>0.033</td>
<td>0.031</td>
</tr>
<tr>
<td>Neg Yield</td>
<td>0.023</td>
<td>0.010</td>
<td>0.010</td>
<td>0.022</td>
<td>0.037</td>
<td>0.030</td>
</tr>
<tr>
<td>Pos LFrac</td>
<td>—</td>
<td>49%</td>
<td>50%</td>
<td>10%(*)</td>
<td>4%</td>
<td>+3%</td>
</tr>
<tr>
<td>Neg LFrac</td>
<td>—</td>
<td>57%</td>
<td>56%</td>
<td>12%(*)</td>
<td>2%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Summary

- Having rods inclined at -100 mrad w.r.t z axis significantly improves final π and μ yields compared to toroid/3 rods all along z axis.

 - Final charge-averaged π, μ yields for inclined rods comparable to 1 rod:

r_{beam}	d_{rod}	1 W rod along z axis (y_1)	Inclined W rods (y_2)	$\frac{y_1}{y_2}$
0.5 cm	1 cm	0.021	0.030	0.70
1.0 cm	2 cm	0.027	0.026	1.04
1.5 cm	2 cm	0.023	0.022	1.05

- Particle jets ($r_{\text{jet}} = 5 \text{ mm}$) have larger yields: ~ 0.035 for $r_{p_{\text{beam}}} = 1.5 \text{ mm}$.

- Shown tables of the π and μ end yields (per p per GeV) and the fraction of π and μ lost when we have the extra target material c.f. the “one rod case”.

John Back
Target Meeting
5 July 07
- W toroid in the $y-z$ (horizontal) plane:
 $R_{\text{curv}} \sim 5 \text{ m}$
 Cross-sectional r: 0.5, 1 and 1.5 cm.

- Beam is inclined -67 mrad w.r.t z axis in $x-z$ (vertical plane), as before.

- Hg toroid has same geometry ($r_{\text{beam}} = 0.4 \text{ cm}$).
• Hg jet in the $x - z$ (vertical) plane: inclined at -100 mrad from z axis ($r = 0.5$ cm)

• Beam is inclined -67 mrad w.r.t z axis in $x - z$ (vertical plane), as before. But $r_{\text{beam}} = 0.15$ cm.

• W “jet” has same geometry and beam